
Black Hole Astrophysics 
Chapter 7.4 

All figures extracted from online sources of from the textbook. 



Flowchart 

Basic properties of the Schwarzschild metric 

Coordinate systems 

Equation of motion and conserved quantities 

Let’s throw stuff in! 

What does it feel like to orbit a Black Hole? 

General motion in Schwarzschild Metric 

Horizon Penetrating coordinates 



The Schwarzschild Matric 

𝑔SH
Sch

αβ
=

−𝑐2 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

“Sch” means that this metric is describing a Schwarzschild Black Hole. 

Recall: A Schwarzschild Black 
Hole is a solution of the 
Einstein Equations assuming 
that we put a point mass M in 
free space and then assume 
that we are in a static 
coordinate. 

“SH” means that we are in the Schwarzschild-Hilbert 
coordinate system. 

Why bother? 
Remember that we are now in curved space, but we can 
sometimes for convenience still choose a locally flat 
coordinate to consider the physics. The SH coordinate is 
just like considering the whole surface of the Earth as a 
curved surface. 

The Schwarzschild radius 𝑟𝑠 =
2 GM

𝑐2  

The metric being diagonal also says that relativistic spherical gravity is still a radial r=force. 



Some basic properties 

ds ≈
dr

1 −
𝑟𝑠
𝑟

 

𝑠 = 𝑟 𝑟 1 −
𝑟𝑠
𝑟

+ 𝑟𝑠 Log[
𝑟

𝑟𝑠
 1 + 1 −

𝑟𝑠
𝑟

  

Integrate[
1

1 −
𝑟𝑠
r0

, r0, 𝑟𝑠, 𝑟 ]
 
 

When 𝑟 → 𝑟𝑠, 𝑠 → 0 
𝑟 → ∞, 𝑠 → 𝑟 and it reduces to Newtonian gravity as expected 



Limits at infinity 

𝑔SH
Sch

αβ
=

−𝑐2 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

→

−𝑐2 0 0 0
0 1 0 0
0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

If we take 𝑟 → ∞ or 𝑟𝑠 → 0 (𝑖. 𝑒.𝑀 → 0) Reduces to the Minkowski metric! 



Passing the horizon 

−𝑐2 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

→

𝑐2 
𝑟𝑠
𝑟

− 1 0 0 0

0 −
1

𝑟𝑠
𝑟 − 1

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

Outside the horizon 𝑟 > 𝑟𝑠 Inside the horizon 𝑟 < 𝑟𝑠 

What’s so interesting? 
We know that particles can only travel on timelike trajectories, that is, ds2 < 0. 
 
Outside the horizon, 𝑔tt is the negative term so we can be on a timelike trajectory if we 
have dt ≠ 0, dr = dθ = dϕ = 0 
 
Inside the horizon, it is 𝑔rr that is negative! So to be on a timelike trajectory, the 
simplest case would be to have dr ≠ 0, dt = dθ = dϕ = 0 
 
This means that we can only fall toward the BH once we pass the horizon! 



Coordinate Systems 
1. The moving body frame (MOV) 

2. Fixed local Lorentz frame (FIX) 

3. Schwarzschild-Hilbert frame (SH) 



The moving body frame (MOV) 

In this frame, we are moving 
with the object of interest. Since 
spacetime is locally flat, we 
have a Minkowski metric in this 
case  

𝑔MOV
Sch

αβ
=

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

 
and by definition the 4-velocity 
𝑈MOV

𝛼 = 𝑐, 0,0,0  

This frame is useful for 
expressing microphysics, such as 
gas pressure, temperature, and 
density, but not motion. 



Fixed local Lorentz frame (FIX) 
In this frame, we consider some locally flat 
part of the Schwarzschild spacetime to sit on 
and watch things fly past. Therefore the 
metric is still the Minkowski one 
 

𝑔FIX
Sch

αβ
=

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

 
but now the 4-velocity of objects become  

𝑈FIX
𝛼 =

γc

γV𝑟 

γV𝜃 

γV𝜙 

  

which is obvious since the FIX and MOV frames 
are simply related by a Lorentz Transform. 

It is a convenient frame for looking at motion of particles. 
However, it is not unique, there is a different FIX frame for every point around the black hole. 
This also means that time flows differently in different frames. 



Schwarzschild-Hilbert frame (SH) 
This is a global coordinate, so it 
does not have the problems in 
the FIX frame, there is a unique 
time coordinate and a single 
𝑟, 𝜃, 𝜙  system. 

 
For this coordinate, the metric is 
the one we presented earlier  

𝑔SH
Sch

αβ
=

−𝑐2 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

 
However, in such a case  

𝑈SH
𝛼 =

𝑈𝑡

𝑈𝑟

𝑈𝜃

𝑈𝜙

 

is hard to interpret. 



Which frame to use? 



How to go from FIX to SH frame? 

𝑔FIX
Sch

αβ
=

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

𝑔𝛼′ 𝛽′ = 𝛬𝛼′
𝛼 𝛬𝛽′

𝛽 𝑔αβ 

𝑔SH
Sch

𝛼′ 𝛽′
= 𝛬SH(𝛼′ )

 FIX(𝛼) 𝛬 SH(𝛽′)
FIX(𝛽) 𝑔FIX

Sch
αβ

 

𝑔SH
Sch

αβ
 

 

=

−𝑐2 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

 

≡

𝑔tt 0 0 0
0 𝑔rr 0 0
0 0 𝑔θθ 0
0 0 0 𝑔ϕϕ

 

𝑔tt 0 0 0
0 𝑔rr 0 0
0 0 𝑔θθ 0
0 0 0 𝑔ϕϕ

= 𝛬SH 𝛼′
FIX 𝛼  𝛬SH 𝛽′

FIX 𝛽  

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

𝛬SH
FIX =

−𝑔tt 0 0 0

0 𝑔rr 0 0

0 0 𝑔θθ 0

0 0 0 𝑔ϕϕ

=

𝑐 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟 0
0 0 0 𝑟 sinθ

 

𝛬FIX
SH =

1

−𝑔tt
0 0 0

0
1

𝑔rr
0 0

0 0
1

𝑔θθ
0

0 0 0
1

𝑔ϕϕ

=

1

𝑐 1 −
𝑟𝑠
𝑟

0 0 0

0 1 −
𝑟𝑠
𝑟

0 0

0 0
1

𝑟
0

0 0 0
1

𝑟 sinθ

 

Generalized Lorentz Transform 



Expressing the 4-velocity in SH coordinates 

𝛬FIX
SH =

1

−𝑔tt
0 0 0

0
1

𝑔rr
0 0

0 0
1

𝑔θθ
0

0 0 0
1

𝑔ϕϕ

=

1

𝑐 1 −
𝑟𝑠
𝑟

0 0 0

0 1 −
𝑟𝑠
𝑟

0 0

0 0
1

𝑟
0

0 0 0
1

𝑟 sinθ

 

𝑈SH
𝛼′ =

𝑈𝑡

𝑈𝑟

𝑈𝜃

𝑈𝜙

= 𝛬FIX 𝛼
SH 𝛼′  𝑈FIX

𝛼 =

1

𝑐 1 −
𝑟𝑠
𝑟

0 0 0

0 1 −
𝑟𝑠
𝑟

0 0

0 0
1

𝑟
0

0 0 0
1

𝑟 sinθ

 

γc

γV𝑟 

γV𝜃 

γV𝜙 

=

𝛾

1 −
𝑟𝑠
𝑟

1 −
𝑟𝑠
𝑟
 γV𝑟 

γV𝜃 

𝑟

γV𝜙 

𝑟 sinθ

 

𝑈FIX
𝛼 =

γc

γV𝑟 

γV𝜃 

γV𝜙 

 𝑈SH
𝛼 =

𝑈𝑡

𝑈𝑟

𝑈𝜃

𝑈𝜙

 

This now becomes more convenient to use and interpret. 𝑈SH
𝛼 is the 4-velocity of the 

global frame and we write its components in terms of local frame parameters 𝑉𝑟 , 𝑉𝜃 , 𝑉𝜙   



Let’s examine the 4-velocity 

𝑈SH
𝛼 =

𝛾

1 −
𝑟𝑠
𝑟

1 −
𝑟𝑠
𝑟
 γV𝑟 

γV𝜃 

𝑟

γV𝜙 

𝑟 sinθ

=

dt

dτ
dr

dτ
dθ

dτ
dϕ

dτ

 

We expect from our old idea of gravity that the 
velocity of objects should approach c as we get 
to the black hole, but if we check  
 

dr

dt
SH

=
dr

dτ
 
dτ

dt
=

𝑈SH
𝑟

𝑈SH
𝑡 = 1 −

𝑟𝑠
𝑟

 𝑉𝑟  

 

Then when 𝑟 → 𝑟𝑠   
dr

dt SH
→ 0 ！ 

Particles seen in the SH frame apparently are ‘stuck’ at the horizon and never get 
across it! 

 
But particles should fall into black holes! 

 
This is simply due to the Generalized Lorentz Transform. 



What happened? 
dtSH =

dtFIX

1 −
𝑟𝑠
𝑟

 

Consider someone falling into a black hole, the local FIX frame observes the time of the 
person as dtFIX, then, for a person sitting watching the BH very far away he would 
observe dtSH. 
 
Given that dtFIX should be finite, as 𝑟 → 𝑟𝑠, dtSH → ∞ 
 
It would take the far away observer infinite amount of time to watch the unfortunate 
person falling into the hole! 

This also says that any photon sent 
out by the falling person would be 
infinitely redshifted. 

𝛬FIX
SH

diag
=

1

𝑐 1 −
𝑟𝑠
𝑟

, 1 −
𝑟𝑠
𝑟
,
1

𝑟
,

1

𝑟 sinθ
 



In the SH frame In the FIX frame 

What happened? 

drSH = drFIX 1 −
𝑟𝑠
𝑟

 

Similarly, for finite drFIX, as 𝑟 → 𝑟𝑠, d𝑟SH → 0！ 
No matter how much the person moves in some instant, a far away observer would 
observe him as stuck! 

Therefore combining dtSH =
dtFIX

1−
𝑟𝑠
𝑟

 and drSH = drFIX 1 −
𝑟𝑠

𝑟
 it’s obvious that the 

apparent velocity for an observer at infinity is zero！ 

𝛬FIX
SH

diag
=

1

𝑐 1 −
𝑟𝑠
𝑟

, 1 −
𝑟𝑠
𝑟
,
1

𝑟
,

1

𝑟 sinθ
 

Ahhhhh Ah …h …….h …………. 



The Equation of motion 

𝑈𝑡 
𝜕𝑃𝑟

𝜕𝑡
−

1

2
 𝑔rr 

𝜕𝑔tt

𝜕𝑟
𝑃𝑡 + 𝑈𝑟 

𝜕𝑃𝑟

𝜕𝑟
+

1

2
 𝑔rr 

𝜕𝑔rr

𝜕𝑟
𝑃𝑟 = 0 

Considering only radial motion, 𝑈𝜃 = 𝑈𝜙 = 0 and applying the relation between 
Christoffel symbols and the metric (we are now working in the SH coordinate), 

In general , the equation of motion expands to  

𝐹𝑟 = 𝑈𝑡  
𝜕𝑃𝑟

𝜕𝑡
+ 𝛤𝑟

μt 𝑃
𝜇 + 𝑈𝑟 

𝜕𝑃𝑟

𝜕𝑟
+ 𝛤𝑟

μr 𝑃
𝜇 + 𝑈𝜃 

𝜕𝑃𝑟

𝜕𝜃
+ 𝛤𝑟

μθ 𝑃
𝜇 + 𝑈𝜙 

𝜕𝑃𝑟

𝜕𝜙
+ 𝛤𝑟

μϕ 𝑃𝜇  

The equation of motion: 
𝑑 𝑃 

dτ

𝛼

= 𝑈 · 𝛻  𝑃 
𝛼

= 𝑈𝛽 
𝜕𝑃𝛼

𝜕𝛽
+ 𝛤𝛼

μβ 𝑃
𝜇 = 𝐹𝛼 



Hello Gravity！ 

Now comes the hidden trick used in the book…𝑃𝑟
SH = 𝛬SH

FIX 𝑃
𝑟
FIX =

𝑃𝑟
FIX

𝑔rr
 

𝜕𝑃𝑟
SH

𝜕𝑟SH
+

1

2
 𝑔rr

SH
 
𝜕𝑔rr

SH

𝜕𝑟SH
𝑃𝑟

SH =
1

𝑔rr
 
𝜕𝑃𝑟

FIX

𝜕𝑟SH
−

1

2
 

𝑃𝑟
FIX

𝑔rr
SH 1.5

 
𝜕𝑔rr

SH

𝜕𝑟SH
+

1

2
 

1

𝑔rr
SH

 
𝜕𝑔rr

SH

𝜕𝑟SH
 
𝑃𝑟

FIX

𝑔rr
 

𝑈𝑡
SH 

𝜕𝑃𝑟
SH

𝜕𝑡SH
−

1

2
 𝑔rr

SH
 
𝜕𝑔tt

SH

𝜕𝑟SH
 𝑃𝑡

SH + 𝑈𝑟
SH 

𝜕𝑃𝑟
SH

𝜕𝑟SH
+

1

2
 𝑔rr

SH
 
𝜕𝑔rr

SH

𝜕𝑟SH
 𝑃𝑟

SH = 0 

Time dilation factor 

General Relativistic Term! 

Newtonian Gravity with relativistic mass 

𝑈𝑡
SH 

𝜕𝑃𝑟
FIX

𝜕𝑡SH
+ 𝑈𝑟

SH 
𝜕𝑃𝑟

FIX

𝜕𝑟SH
−

𝑃𝑡
SH 𝑈𝑡

SH

𝑔rr
 
1

2
 
𝜕𝑔tt

SH

𝜕𝑟SH
= 0 

dP𝑟
FIX

dτ
=

𝑑 γm0 𝑉
𝑟 

dτ
= −

𝛾

1 −
rs
𝑟

 
𝐺 𝑀 γm0

𝑟2  

It’s from the gradient operator! 



Conserved Quantities –1-forms are useful！ 

Again the equation of motion 
𝑑 𝑃 

dτ

𝛼

= 𝑈 · 𝛻  𝑃 
𝛼

= 𝑈𝛽 
𝜕𝑃𝛼

𝜕𝛽
+ 𝛤𝛼

μβ 𝑃
𝜇 = 𝐹𝛼 

Considering the 𝜙 direction,  
 

𝑈𝑡  
𝜕𝑃𝜙

𝜕𝑡
+ 𝑈𝑟  

𝜕𝑃𝜙

𝜕𝑟
+ 𝛤𝜙

ϕr 𝑃
𝜙 + 𝑈𝜃 

𝜕𝑃𝜙

𝜕𝜃
+ 𝛤𝜙

ϕθ 𝑃
𝜙 + 𝑈𝜙 

𝜕𝑃𝜙

𝜕𝜙
+ 𝛤𝜙

rϕ 𝑃𝑟 + 𝛤𝜙
θϕ 𝑃𝜃 = 0 

Replacing in the definitions of the Christoffel symbols, 
 

𝑈𝑡 
𝜕𝑃𝜙

𝜕𝑡
+ 𝑈𝑟 

𝜕𝑃𝜙

𝜕𝑟
+ 𝑈𝜃 

𝜕𝑃𝜙

𝜕𝜃
+ 𝑈𝜙 

𝜕𝑃𝜙

𝜕𝜙
+ 𝑈𝑟 𝑃𝜙 

2

𝑟
+ 𝑈𝜙 𝑃𝜃 

2 cosθ

sinθ
= 0 

The angular momentum p𝜙 of a particle is conserved along the trajectory! 

Henceforth, if unspecified, all the tensor/vector components are written in 
the SH coordinate 

𝑝𝜙 = 𝛾 𝑚0 𝑉
𝜙  𝑟 sinθ Finally, we get, 

𝑑 𝑃𝜙 𝑟2 sin2 𝜃

dτ
=

dp𝜙

dτ
≡

dL

dτ
= 0 



Conserved Quantities –1-forms are useful！ 

𝐸 = −𝑝𝑡 = 1 −
𝑟𝑠
𝑟
 𝛾 𝑚0 𝑐

2 
dE

dτ
= 0 

The energy p𝑡 of a particle is also conserved along the trajectory! 

Similarly, we can also find that for the energy,  

This constant, E, is sometimes also called energy at infinity because as 𝑟 → ∞, this 
term goes to  𝛾 𝑚0 𝑐

2. 
 
However, since it is the same at any radius, we can use it to calculate𝛾(𝑟) hence the 
velocity (we will see this on the next slide). 
 
A moving body is bound to the BH if  E < 𝑚0 𝑐

2 and unbound otherwise.  



Free fall 

𝐸 = −𝑝𝑡 = 1 −
𝑟𝑠
𝑟
 𝛾 𝑚0 𝑐

2 

On the last slide we mention that we can use E to calculated the Lorentz factor as 
a function of radial distance r, let’s now work it out. 

Consider a particle falling toward a black hole stating 
from rest at infinity. 

This means that 𝐸∞ = 𝑚0 𝑐
2 = 𝐸 𝑟 = 1 −

𝑟𝑠

𝑟
 𝛾 𝑚0 𝑐

2 

This gives us 𝛾 =
1

1− 𝑉𝑟  𝑐 
2
 

=
1

1 −
rs
𝑟

→ 𝑉𝑟 
ff = −

2 𝐺 𝑀

𝑟
 At the event horizon, 𝑉𝑟 

ff 𝑟𝑠 = −𝑐 

We see that if we drop something at infinity and assuming there is noting else in the 
universe between it and the BH, then it arrives at the BH at exactly the speed of light! 



Chucking stuff directly at the BH 
Now you might ask：”Particles accelerate 
to c if we drop them off at infinity, what if 
we kick them into the BH starting from 
infinity?” 

Special relativity tells us that we can’t 
exceed c now matter what, so somehow 
the particle should still end up less than c 
even if we throw as hard as we can! 

Let’s consider a general case in which we 
don’t specify energy at infinity, thus, 

𝐸∞ = 𝐸 𝑟 = 1 −
𝑟𝑠
𝑟
 𝛾 𝑚0 𝑐

2 

Solving this gives 𝑉𝑟 = −𝑐 1 −
𝑚0 𝑐2

𝐸
 1 −

𝑟𝑠

𝑟
 

Interestingly, no matter what E is, when r = 𝑟𝑠, 
we always get 𝑉𝑟 = −𝑐！ 

  

𝐸∞ = 𝑚0 𝑐
2 

𝐸∞ = 2𝑚0 𝑐
2 

𝐸∞ = 5𝑚0 𝑐
2 

𝐸∞ = 10𝑚0 𝑐
2 

𝐸∞ = 100𝑚0 𝑐
2 



Orbits 
Consider the simple cases of circular orbits, again using the equation of motion 

𝐹𝑟 = 𝑈𝑡 
𝜕𝑃𝑟

𝜕𝑡
+ 𝛤𝑟

μt 𝑃
𝜇 + 𝑈𝑟 

𝜕𝑃𝑟

𝜕𝑟
+ 𝛤𝑟

μr 𝑃
𝜇 + 𝑈𝜃 

𝜕𝑃𝑟

𝜕𝜃
+ 𝛤𝑟

μθ 𝑃
𝜇 + 𝑈𝜙 

𝜕𝑃𝑟

𝜕𝜙
+ 𝛤𝑟

μϕ 𝑃𝜇  

With some further reduction… 

𝑈𝑡 𝛤𝑟
tt 𝑃

𝑡 + 𝑈𝜙 𝛤𝑟
ϕϕ 𝑃𝜇 = 0 → 𝑈𝑡 2 𝑔𝑟𝑟 

−1

2
 
𝜕𝑔tt

𝜕𝑟
= 𝑈𝜙 2

 𝑔𝑟𝑟 
1

2
 
𝜕𝑔ϕϕ

𝜕𝑟
 

𝑉𝜙 =
𝐺 𝑀

𝑟 − 𝑟𝑠
 

We find that the orbital 
velocity in general is  



Photon Orbits 

To find the orbital radius of photons, lets consider 𝑉𝜙 =
𝐺 𝑀

𝑟−𝑟𝑠
= 𝑐 case 

This gives us 𝑟ph =
3

2
 𝑟𝑠 

i.e. for photons, the only place they can orbit the BH is at this radius. 

However, we’ll see later in a more 
general formulism (in Schutz) that 
this orbit is nowhere stable, if we 
accidently kick the photon a bit, it 
will either spiral into the BH or spiral 
out to infinity. 



Finite mass particle orbits 
For finite mass particles, we need to consider 𝑉𝜙 =

𝐺 𝑀

𝑟−𝑟𝑠
< 𝑐 case 

By definition of the Lorentz factor 𝛾orb =
1

1−
𝑉orb

𝑐

2
=

𝑟−𝑟𝑠

𝑟−
3

2
 𝑟𝑠

 

Solving for the energy 
and angular momentum,  

𝐿 = 𝑝𝜙 = 𝛾 𝑚0 𝑉
𝜙  𝑟 sinθ 𝐸 = −𝑝𝑡 = 1 −

𝑟𝑠
𝑟
 𝛾 𝑚0 𝑐

2 

𝐿orb =
𝑟𝑠

2 𝑟 − 3 𝑟𝑠
 𝑟 𝑚0 𝑐

2 

𝐸orb =
𝑟 − 𝑟𝑠

𝑟 𝑟 −
3
2  𝑟𝑠

 𝑚0 𝑐
2 

1.5 𝑟𝑠 -- The radius at which  

Minimum point at 3 𝑟𝑠 L 

E 



The ISCO 

The minimum for both of these two curves happen at r = 3𝑟𝑠 
This is commonly called the Innermost stable circular orbit for reasons we will see later. 

1.5 𝑟𝑠  – The radius at which photons orbit 

Minimum point at 3 𝑟𝑠 L 

E 

However, we will also find that 
the ISCO is more or less a 
‘marginally stable’ orbit! If we 
accidently kick it a bit toward the 
black hole, it will just give up and 
fall in! 

𝐿orb =
𝑟𝑠

2 𝑟 − 3 𝑟𝑠
 𝑟 𝑚0 𝑐

2 
𝐸orb =

𝑟 − 𝑟𝑠

𝑟 𝑟 −
3
2  𝑟𝑠

 𝑚0 𝑐
2 

𝐿 = 3 𝑟𝑠 𝑚0 𝑐 𝐸 =
2 2

3
 𝑚0 𝑐 

At this radius, L and E are 



General discussion for particle motion 

Previously, we have already found that we can calculate either free-fall or orbits by 
considering E or L respectively. 

For a general consideration, it is more convenient if we write both of them in the 
same equation so we can discuss different the properties of the different orbits 
more clearly  

𝑃2 = −𝑚0
2𝑐2 = 𝑔tt 𝑃

𝑡 2 + 𝑔rr 𝑃
𝑟 2 + 𝑔θθ 𝑃

𝜃 2
+ 𝑔ϕϕ 𝑃𝜙 2

 

𝐿 = 𝑝𝜙 = 𝛾 𝑚0 𝑉
𝜙  𝑟  𝐸 = −𝑝𝑡 = 1 −

𝑟𝑠
𝑟
 𝛾 𝑚0 𝑐

2 

For simplicity, we take 𝜃 = 𝜋 2 , so 𝑃𝜃 = 0 

−
1

𝑐2  
1

1 −
𝑟𝑠
𝑟

 𝐸2 +
1

1 −
𝑟𝑠
𝑟

 𝑚0
2 

dr

dτ

2

+
𝐿2

𝑟2 = −𝑚0
2 𝑐2 

dr

𝑐 dτ

2

=
𝐸

𝑚0 𝑐
2

2

− 1 −
𝑟𝑠
𝑟

 1 +
1

𝑟2  
𝐿

𝑚0 𝑐

2

 



General discussion for particle motion 

dr

𝑐 dτ

2

=
𝐸

𝑚0 𝑐
2

2

− 1 −
𝑟𝑠
𝑟

 1 +
1

𝑟2
 

𝐿

𝑚0 𝑐

2

 

We can define the effective potential as 𝑉2 𝑟 ≡ 1 −
𝑟𝑠

𝑟
 1 +

1

𝑟2  
𝐿

𝑚0 𝑐

2
 

Then, 
dr

𝑐 dτ

2
=

𝐸

𝑚0 𝑐2

2
− 𝑉2 𝑟  very much like the classical 𝐸𝑘 = 𝐸tot − 𝑉！ 

Remember that both E and L 
are constant of trajectory 



Behavior in different potentials 𝑉2 𝑟 ≡ 1 −
𝑟𝑠

𝑟
 1 +

1

𝑟2  
𝐿

𝑚0 𝑐

2
 

Falls in no matter what! Simply 
put, the centrifugal force can’t 
balance with gravity! 

http://www2.warwick.ac.uk/fac/sci/physics/current/teach/module_home/px436/notes/lecture16.pdf 

Unstable Circular 

Hyperbolic 

Capture 

Elliptical 

Circular 

Capture 

Capture 

Comparing with Classical Physics 

Stable Circular 

Double root solution 

dr

𝑐 dτ

2
=

𝐸

𝑚0 𝑐2

2
− 𝑉2 𝑟   

http://www2.warwick.ac.uk/fac/sci/physics/current/teach/module_home/px436/notes/lecture16.pdf


In relation to our previous analysis 

1 Circular orbit solution  

Capture Capture 

For𝐿 > 3   𝑟𝑠𝑚0 𝑐 we have two solutions. 

ISCO case 

No real solution 

Two solutions Unstable Circular 
Capture 

Stable Circular 



The marginally bound orbit 
𝐸∞ = 𝐸 = 𝑚0 𝑐

2 

2𝑟𝑠 



How stable is the ISCO? 

1 Circular orbit solution  

Capture 

dr

𝑐 dτ

2

=
𝐸

𝑚0 𝑐
2

2

− 1 −
𝑟𝑠
𝑟

 1 +
1

𝑟2
 

𝐿

𝑚0 𝑐

2

 

Taking the derivating w.r.t proper time on both sides, we get the force equation 
1

𝑐
 
𝑑2 𝑟

dτ2 = −
1

2
 
𝑑

dr
[ 1 −

𝑟𝑠

𝑟
 1 +

1

𝑟2  
𝐿

𝑚0 𝑐

2
  which is analogous to 

𝑑2 𝑟 

dt2
=

𝐹 

𝑚
= − 𝛻 𝑉 in 

Classical Physics. 

The ISCO is the double root solution, it is at the same time the stable and unstable 
circular orbit. Unfortunately for particles flying about the black hole, the result is 
simply that it is unstable! Any perturbation toward the black hole and the particle 
would have to say goodbye to the rest of the outside universe! 



Observational evidence of the ISCO? 
Resolving the Jet-Launch Region of the M87 Supermassive Black Hole ,  

Science 338, 355 (2012) 
 



𝑔HP
Sch

αβ
=

−𝑐2 1 −
𝑟𝑠
𝑟

𝑟𝑠
𝑟
 𝑐 0 0

𝑟𝑠
𝑟
 𝑐 1 +

𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 



The Horizon-Penetrating 
coordinates 

𝑔SH
Sch

αβ
=

−𝑐2 1 −
𝑟𝑠
𝑟

0 0 0

0
1

1 −
𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

𝑔HP
Sch

αβ
=

−𝑐2 1 −
𝑟𝑠
𝑟

𝑟𝑠
𝑟
 𝑐 0 0

𝑟𝑠
𝑟
 𝑐 1 +

𝑟𝑠
𝑟

0 0

0 0 𝑟2 0
0 0 0 𝑟2 sin2 𝜃

 

dt′ = dt +
𝑟𝑠

𝑐 𝑟 − 𝑟𝑠
 dr 

𝛬HP 𝛼′
SH 𝛼 ≡

1
𝑟𝑠

𝑐 𝑟 − 𝑟𝑠
0 1

 

1
𝑟𝑠

𝑐 𝑟 − 𝑟𝑠
0 1

𝑇

.
−𝑐2 1 −

𝑟𝑠
𝑟

𝑟𝑠
𝑟
 𝑐

𝑟𝑠
𝑟
 𝑐 1 +

𝑟𝑠
𝑟

.
1

𝑟𝑠
𝑐 𝑟 − 𝑟𝑠

0 1

=
−

𝑐2 𝑟 − 𝑟𝑠
𝑟

0

0
𝑟

𝑟 − 𝑟𝑠

 

𝛬HP 𝛼′
SH 𝛼  𝛬HP 𝛽′

SH 𝛽  𝑔HP
Sch

𝛼′ 𝛽′ = 𝑔SH
Sch

αβ
 




